Series SSO

कोड नं. 56/3/A

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/3/A 1 P.T.O.

सामान्य निर्देश:

- सभी प्रश्न अनिवार्य हैं। (i)
- प्रश्न संख्या 1 से 5 तक अति लघू-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है। (ii)
- प्रश्न संख्या 6 से 10 तक लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं। (iii)
- प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं। (iv)
- प्रश्न संख्या 23 मुल्याधारित प्रश्न है और इसके लिए 4 अंक हैं। (v)
- प्रश्न संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं । (vi)
- यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति (vii) नहीं है ।

General Instructions:

- All questions are compulsory. *(i)*
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv)Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- Question number 23 is a value based question and carry 4 marks. (v)
- Questions number 24 to 26 are long answer questions and carry 5 marks (vi) each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए: 1.

 CH_3 $CH_3 - C - CH_2 - OH$ CH_{2}

56/3/A 2

CLICK HERE

www.studentbro.in

Write the IUPAC name of the given compound:

$$\begin{array}{c} \operatorname{CH}_3 \\ | \\ \operatorname{CH}_3 - \operatorname{C} - \operatorname{CH}_2 - \operatorname{OH} \\ | \\ \operatorname{CH}_3 \end{array}$$

- 2. फ़ॉस्फ़ोरस के किन्हीं दो ऑक्सोऐसिडों के सूत्र लिखिए। Write the formulae of any two oxoacids of phosphorus.
- ${f 3.}$ निम्नलिखित युग्म में से कौन ${f S_N}2$ अभिक्रिया अधिक तीव्रता से करेगा :

$$\mathbf{C_6H_5} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{Br}$$
 और $\mathbf{C_6H_5} - \mathbf{CH} - \mathbf{CH_3}$ | Br

Which would undergo S_N^2 reaction faster in the following pair :

$$C_6H_5-CH_2-CH_2-Br$$
 and $C_6H_5-CH-CH_3$ $|$ Br

4. AlCl $_3$ और NaCl में से, कौन-सा ऋणात्मक सॉल को स्कंदित करने में अधिक प्रभावशाली है और क्यों ?

Out of AlCl₃ and NaCl, which is more effective in causing coagulation of a negative sol and why?

- 5. उस यौगिक का सूत्र लिखिए जिसमें Y तत्त्व ccp जालक बनाता है और X के परमाणु चतुष्फलकीय रिक्तियों का 1/3वाँ भाग घेरते हैं । Write the formula of a compound in which the element Y forms ccp lattice and atoms of X occupy $1/3^{rd}$ of tetrahedral voids.
- **6.** (i) निम्नलिखित कॉम्प्लेक्स का आई.यू.पी.ए.सी. नाम लिखिए : $[Pt(NH_3)(H_2O)Cl_2]$
 - (ii) निम्नलिखित कॉम्प्लेक्स का सूत्र लिखिए : ट्रिस(एथेन-1,2-डाइऐमीन)क्रोमियम(III) क्लोराइड
 - (i) Write down the IUPAC name of the following complex : $[Pt(NH_3)(H_2O)Cl_2]$
 - (ii) Write the formula for the following complex : tris(ethane-1,2-diamine)chromium(III) chloride

56/3/A 3 P.T.O.

1

1

1

1

(i)
$$C_6H_5 - CO - CH_3 \xrightarrow{?} C_6H_5 - CH_2 - CH_3$$

(ii)
$$CH_3 - COOH \xrightarrow{?} CH_3 - COCl$$

अथवा

निम्नलिखित यौगिकों को उनके सामने दिए गए गुणधर्म के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

CH₃CHO, C₆H₅CHO, HCHO (i)

(नाभिकस्नेही संकलन अभिक्रिया के प्रति सिक्रयता)

2,4-डाइनाइट्रोबेन्ज़ोइक एसिड, 4-मेथॉक्सीबेन्ज़ोइक एसिड, 4-नाइट्रोबेन्ज़ोइक एसिड (ii) (अम्लीय व्यवहार)

Write the reagents used in the following reactions:

(i)
$$C_6H_5 - CO - CH_3 \xrightarrow{?} C_6H_5 - CH_2 - CH_3$$

(ii)
$$CH_3 - COOH \xrightarrow{?} CH_3 - COCl$$

OR

Arrange the following compounds in increasing order of their property as indicated:

- CH₃CHO, C₆H₅CHO, HCHO (i) (reactivity towards nucleophilic addition reaction)
- (ii) 2,4-dinitrobenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid (acidic character)
- क्या कारण है कि जलीय जीव ठंडे जल में अधिक अच्छा महसूस करते हैं अपेक्षाकृत (i) 8. गर्म जल में ?
 - क्या होता है जब हम रक्त सेल को नमकीन जल के विलयन (अतिपरासरणदाबी (ii) विलयन) में रखते हैं ? कारण बताइए ।
 - Why are aquatic species more comfortable in cold water than in (i) warm water?
 - (ii) What happens when we place the blood cell in saline water solution (hypertonic solution)? Give reason.

56/3/A 4

9. संक्रमण तत्त्व परिवर्तनशील उपचयन अवस्थाएँ क्यों दिखलाते हैं ? d-ब्लॉक की उपचयन अवस्थाएँ p-ब्लॉक के तत्त्वों की उपचयन अवस्थाओं से कैसे भिन्न होती हैं ?
Why do transition elements show variable oxidation states ? How is the variability in oxidation states of d-block different from that of the p-block elements ?

2

2

3

3

- 10. जब $1.5 \, \mathrm{A}$ की विद्युत् धारा $\mathrm{AgNO_3}$ के विलयन में से प्रवाहित की जाती है तो कैथोड पर सिल्वर का $1.5 \, \mathrm{g}$ जमा होने में जो समय लगता है, उसका परिकलन कीजिए । (Ag का मोलर द्रव्यमान = $108 \, \mathrm{g \ mol^{-1}}$, $1 \, \mathrm{F} = 96500 \, \mathrm{C \ mol^{-1}}$) Calculate the time to deposit $1.5 \, \mathrm{g}$ of silver at cathode when a current of $1.5 \, \mathrm{A}$ was passed through the solution of $\mathrm{AgNO_3}$. (Molar mass of $\mathrm{Ag} = 108 \, \mathrm{g \ mol^{-1}}$, $1 \, \mathrm{F} = 96500 \, \mathrm{C \ mol^{-1}}$)
- 11. आप निम्नलिखित का रूपांतरण कैसे करेंगे :
 - (i) प्रोप-1-ईन को प्रोपेन-2-ऑल में
 - (ii) ब्रोमोबेन्ज़ीन को 2-ब्रोमोऐसीटोफ़ीनोन में
 - (iii) 2-ब्रोमोब्यूटेन को ब्यूट-2-ईन में अथवा

क्या होता है जब

- (i) एथिल क्लोराइड को NaI के साथ ऐसीटोन की उपस्थिति में उपचारित किया जाता है,
- (ii) शुष्क ईथर की उपस्थिति में क्लोरोबेन्ज़ीन को Na धातु के साथ उपचारित किया जाता है,
- (iii) मेथिल क्लोराइड को KNO2 के साथ उपचारित किया जाता है ?

अपने उत्तर के पक्ष में रासायनिक समीकरणों को लिखिए।

How do you convert the following:

- (i) Prop-1-ene to Propan-2-ol
- (ii) Bromobenzene to 2-bromoacetophenone
- (iii) 2-bromobutane to But-2-ene

OR

What happens when

- (i) ethyl chloride is treated with NaI in the presence of acetone,
- (ii) chlorobenzene is treated with Na metal in the presence of dry ether,
- methyl chloride is treated with KNO₂? (iii)

Write chemical equations in support of your answer.

निम्नलिखित के लिए कारण दीजिए : **12.**

3

3

- p-मेथिलफ़ीनॉल की अपेक्षा p-नाइटोफ़ीनॉल अधिक अम्लीय है। (i)
- फ़ीनॉल में C O आबन्ध लम्बाई अपेक्षाकृत छोटी है मेथैनॉल में के उसी आबन्ध से । (ii)
- सोडियम मेथॉक्साइड $(Na^{+} OCH_3)$ के साथ अभिक्रिया करने पर $(CH_3)_3C Br$ (iii) मुख्य उत्पाद के रूप में ऐल्कीन देता है न कि ईथर ।

Give reasons for the following:

- (i) p-nitrophenol is more acidic than p-methylphenol.
- (ii) Bond length of C-O bond in phenol is shorter than that in methanol.
- (CH₃)₃C Br on reaction with sodium methoxide (Na⁺ ⁻OCH₃) (iii) gives alkene as the main product and not an ether.
- 20°C पर जल का वाष्प दाब 17.5 mm Hg है । जब ग्लूकोस (मोलर द्रव्यमान = 13. 180 g mol^{-1}) का 15 g जल के 150 g में घुला हो, तो 20°C पर जल का वाष्प दाब परिकलित कीजिए।

Vapour pressure of water at 20°C is 17.5 mm Hg. Calculate the vapour pressure of water at 20° C when $15\,\mathrm{g}$ of glucose (Molar mass = 180 g mol^{-1}) is dissolved in 150 g of water.

दिए गए दोषपूर्ण क्रिस्टल की जाँच कीजिए : 14.

$$X^+ \quad Y^- \quad X^+ \quad Y^- \quad X^+$$

$$\mathbf{Y}^{-}$$
 \mathbf{X}^{+} \mathbf{Y}^{-} \mathbf{X}^{+} \mathbf{Y}^{-}

$$X^+$$
 $Y^ X^+$ $e^ X^+$

$$Y^ X^+$$
 $Y^ X^+$ Y^-

56/3/A 6

Get More Learning Materials Here:

- उपर्युक्त दोष रससमीकरणिमतीय (स्टॉइकियोमीट्रिक) है अथवा अ-रससमीकरणिमतीय (i) (अन-स्टॉइकियोमीटिक) है ?
- इलेक्ट्रॉन वाली स्थिति के लिए जो पद प्रयुक्त होता है, उसे लिखिए। (ii)
- इस प्रकार का दोष दिखाने वाले यौगिक का एक उदाहरण दीजिए । (iii)

Examine the given defective crystal:

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-}

Answer the following questions:

- Is the above defect stoichiometric or non-stoichiometric? (i)
- (ii) Write the term used for the electron occupied site.
- (iii) Give an example of the compound which shows this type of defect.
- निम्नलिखित अभिक्रिया के लिए $~E^0_{
 m the}~$ और $~\Delta_{
 m r} G^0$ को $25^{
 m eC}$ पर परिकलित कीजिए : **15.** 3

$$A^{2+} + B^{+} \longrightarrow A^{3+} + B$$

दिया गया है : $K_c = 10^{10}$, 1 F = 96500 C mol⁻¹

Calculate E_{cell}^0 and $\Delta_r G^0$ for the following reaction at 25°C:

$$A^{2+} + B^+ \longrightarrow A^{3+} + B$$

Given: $K_c = 10^{10}$, $1 \text{ F} = 96500 \text{ C} \text{ mol}^{-1}$

- [Co(NH₃)₅ONO]Cl₂ किस प्रकार की समावयवता प्रदर्शित करता है ? **16.** (i)
 - क्रिस्टल क्षेत्र सिद्धान्त के आधार पर यदि $\Delta_{\rm o} < {
 m P}$ है, तो ${
 m d}^4$ आयन का इलेक्ट्रॉनिक (ii) विन्यास लिखिए ।
 - $[\mathrm{Fe}(\mathrm{CN})_6]^{3-}$ में संकरण अवस्था और इसका आकार लिखिए । (iii) (Fe का परमाणु क्रमांक = 26)

- What type of isomerism is shown by [Co(NH₃)₅ONO]Cl₂? (i) On the basis of crystal field theory, write the electronic (ii) configuration for d^4 ion if $\Delta_0 < P$. Write the hybridization and shape of $[Fe(CN)_6]^{3-}$. (iii) (Atomic number of Fe = 26) एक उदाहरण सहित अधिशोषण को परिभाषित कीजिए । क्या कारण है कि अधिशोषण स्वभाव में ऊष्माक्षेपी होता है ? अधिशोष्य और अधिशोषी के बीच बल की प्रकृति के आधार पर अधिशोषण स्वभाव के प्रकार को लिखिए । 3 Define adsorption with an example. Why is adsorption exothermic in nature? Write the types of adsorption based on the nature of forces between adsorbate and adsorbent. टाइटेनियम के परिष्करण के लिए प्रयुक्त होने वाली विधि का नाम लिखिए। (i) सिल्वर के निष्कर्षण में Zn की क्या भूमिका होती है ? (ii) धातु ऑक्साइड का धातु में अपचयन सरल हो जाता है यदि प्राप्त धातु द्रव अवस्था (iii) में हो । क्यों ? 3 (i) Name the method used for the refining of titanium. What is the role of Zn in the extraction of silver? (ii) (iii) Reduction of metal oxide to metal becomes easier if the metal obtained is in liquid state. Why? निम्नलिखित बहुलकों के एकलकों के नाम और उनकी संरचनाएँ लिखिए : 3 नाइलॉन-6,6 (i)
- 19.
 - बेकेलाइट (ii)

17.

18.

पॉलिस्टाइरीन (iii)

Write the names and structures of the monomers of the following polymers:

- (i) Nylon-6,6
- (ii) Bakelite
- (iii) Polystyrene

56/3/A 8

- निम्नलिखित में से कौन-सा एक डाइसैकेराइड है : 20. (i) स्टार्च. माल्टोस. फ्रक्टोस. ग्लकोस
 - अम्लीय ऐमीनो ऐसिड और क्षारीय ऐमीनो ऐसिड में क्या अंतर है ? (ii)
 - दो न्युक्लिओटाइडों को जोडने वाली लिंकेज का नाम लिखिए। (iii)

3

3

- (i) Which one of the following is a disaccharide: starch, maltose, fructose, glucose
- (ii) What is the difference between acidic amino acid and basic amino acid?
- Write the name of the linkage joining two nucleotides. (iii)
- निम्नलिखित अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए : 21.
 - $CH_3 C = O \qquad \xrightarrow{H_2N NHCONH_2} ?$
 - (ii) $C_6H_5 CH_2 CH_3 \xrightarrow{\text{(a) KMnO}_4/\text{ KOH}} ?$
 - सान्द्र $\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4}$

Predict the products of the following reactions:

- $CH_3 C = O \xrightarrow{H_2N NHCONH_2} ?$
- (ii) $C_6H_5 CH_2 CH_3 \xrightarrow{\text{(a) KMnO}_4/\text{KOH}}$?
- COOH conc. $\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4}$

56/3/A

9

P.T.O.

- **22.** (i) $\mathrm{Mn}^{3+}/\mathrm{Mn}^{2+}$ युग्म के लिए E^0 का मान धनात्मक (+ $1\cdot5$ V) है जबिक $\mathrm{Cr}^{3+}/\mathrm{Cr}^{2+}$ के लिए यह ऋणात्मक (– $0\cdot4$ V) है। क्यों ?
 - (ii) संक्रमण धातुएँ रंगीन यौगिक बनाती हैं। क्यों ?
 - (iii) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$2 \, \text{MnO}_4^- + 16 \, \text{H}^+ + 5 \, \text{C}_2 \, \text{O}_4^{2-} \rightarrow$$

- (i) E^0 value for the Mn^{3+}/Mn^{2+} couple is positive (+ 1.5 V) whereas that of Cr^{3+}/Cr^{2+} is negative (- 0.4 V). Why?
- (ii) Transition metals form coloured compounds. Why?
- (iii) Complete the following equation:

$$2 \text{MnO}_4^- + 16 \text{ H}^+ + 5 \text{C}_2 \text{O}_4^{2-} \rightarrow$$

23. जवान बच्चों में मधुमेह और अवसाद (उदासी) की बढ़ती संख्या को देखकर, एक प्रसिद्ध स्कूल के प्रिंसिपल श्री लुगानी ने एक सेमिनार का आयोजन किया जिसमें अन्य प्रिंसिपलों और बच्चों के माता-पिताओं को आमंत्रित किया । यह निर्णय लिया गया कि स्कूलों में सड़े हुए खाने की वस्तुएँ बंद की जाएँ और स्वास्थ्यवर्धक वस्तुएँ जैसे सूप, लस्सी, दूध, आदि उपलब्ध कराई जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकाल की ऐसेम्बली के समय बच्चों को आधा घंटे का शारीरिक व्यायाम अनिवार्य रूप से कराया जाए । छः माह के पश्चात्, श्री लुगानी ने अधिकतर स्कूलों में फिर स्वास्थ्य परीक्षण कराया और बच्चों के स्वास्थ्य में अनुपम सुधार पाया गया ।

उपर्युक्त विवरण को पढ़कर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री लुगानी द्वारा किन मूल्यों (कम-से-कम दो) को प्रदर्शित किया गया ?
- (ii) एक विद्यार्थी के रूप में, आप इस विषय में कैसे जागरूकता फैलाएँगे ?
- (iii) प्रति-अवसादक (ऐन्टिडीप्रीसेन्ट) ड्रग्स क्या हैं ? एक उदाहरण दीजिए ।
- (iv) एक मधुमेह के रोगी के लिए मिठाई बनाने के लिए जो मीठाकारी अभिकारक (मधुकर) प्रयुक्त होता है, उसका नाम दीजिए।

56/3/A 10

3

Seeing the growing cases of diabetes and depression among young children, Mr. Lugani, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Lugani conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Lugani?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are antidepressant drugs? Give an example.
- (iv) Name the sweetening agent used in the preparation of sweets for a diabetic patient.

- 24. (a) निम्नलिखित के कारण देते हुए स्पष्ट कीजिए :
 - (i) NH_4^+ में आबन्ध कोण अपेक्षाकृत NH_3 वाले कोण से बड़ा है ।
 - (ii) अपचायक व्यवहार SO_2 से TeO_2 की ओर घटता है ।
 - (iii) HClO की अपेक्षा HClO4 प्रबलतर अम्ल है।
 - (b) निम्नलिखित की संरचनाएँ आरेखित कीजिए:
 - (i) $H_2S_2O_8$
 - (ii) XeOF₄

5

अथवा

56/3/A 11 P.T.O.

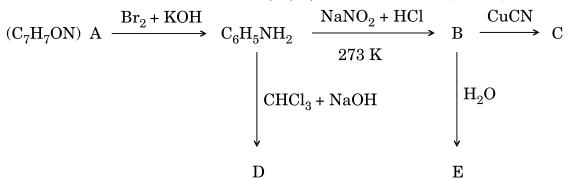
- (a) जब सफ़ेद फ़ॉस्फ़ोरस को सांद्र NaOH के विलयन के साथ गर्म किया जाता है तो कौन-सी जहरीली गैस निकलती है ? रासायनिक समीकरण लिखिए।
- (b) एन. बैर्टलेट द्वारा बनाए गए उत्कृष्ट गैस के प्रथम यौगिक का सूत्र लिखिए। इस यौगिक को बनाने के लिए एन. बैर्टलेट की प्रेरणा क्या थी?
- (c) क्लोरीन की अपेक्षा फ्लुओरीन प्रबलतर उपचायक है। क्यों ?
- (d) क्लोरीन गैस का एक उपयोग लिखिए।
- (e) निम्नलिखित समीकरण को पूर्ण कीजिए:

$$CaF_2 + H_2SO_4 \rightarrow$$

5

- (a) Account for the following:
 - (i) Bond angle in NH_4^+ is greater than that in NH_3 .
 - (ii) Reducing character decreases from SO₂ to TeO₂.
 - (iii) HClO₄ is a stronger acid than HClO.
- (b) Draw the structures of the following:
 - (i) $H_2S_2O_8$
 - ${\rm (ii)} \quad {\rm XeOF_4}$

OR


- (a) Which poisonous gas is evolved when white phosphorus is heated with conc. NaOH solution? Write the chemical equation.
- (b) Write the formula of first noble gas compound prepared by N. Bartlett. What inspired N. Bartlett to prepare this compound?
- (c) Fluorine is a stronger oxidizing agent than chlorine. Why?
- (d) Write one use of chlorine gas.
- (e) Complete the following equation :

$$CaF_2 + H_2SO_4 \rightarrow$$

56/3/A

CLICK HERE

25. आण्विक सूत्र C_7H_7ON का एक ऐरोमैटिक यौगिक 'A' नीचे दिखाई गई एक अभिक्रिया श्रेणी में जाता है। निम्नलिखित अभिक्रियाओं में A, B, C, D और E की संरचनाएँ लिखिए:

अथवा

- (a) जब ऐनिलीन निम्नलिखित अभिकारकों के साथ अभिक्रिया करता है तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) Br₂ जल
 - (ii) HCl
 - (iii) $(CH_3CO)_2O$ / पिरिडीन
- (b) निम्नलिखित को उनके क्वथनांक के बढ़ते हुए क्रम में व्यवस्थित कीजिए : $C_2H_5NH_2,\ C_2H_5OH,\ (CH_3)_3N$
- (c) यौगिकों के निम्नलिखित युग्म में अंतर करने के लिए एक सामान्य रासायनिक जाँच दीजिए :

$$(\mathrm{CH_3})_2 - \mathrm{NH}$$
 और $(\mathrm{CH_3})_3 \mathrm{N}$

An aromatic compound 'A' of molecular formula C_7H_7ON undergoes a series of reactions as shown below. Write the structures of A, B, C, D and E in the following reactions:

OR

56/3/A 13 P.T.O.

5

- Write the structures of the main products when aniline reacts with (a) the following reagents:
 - (i) Br₂ water
 - (ii) **HCl**
 - (CH₃CO)₂O / pyridine (iii)
- (b) Arrange the following in the increasing order of their boiling point:

$$C_2H_5NH_2$$
, C_2H_5OH , $(CH_3)_3N$

Give a simple chemical test to distinguish between the following (c) pair of compounds:

$$(CH_3)_2 - NH$$
 and $(CH_3)_3N$

जलीय विलयन में मेथिल ऐसीटेट के जल-अपघटन से निम्नलिखित परिणाम प्राप्त हए : 26.

t/s	0	30	60
$\hbox{[CH$_3$COOCH$_3]/mol L^{-1}}$	0.60	0.30	0.15

- जल की सान्द्रता स्थिर रखते हुए प्रदर्शित कीजिए कि यह छद्म (स्यूडो) प्रथम कोटि (i) की अभिक्रिया है।
- समयांतराल 30 से 60 सेकण्ड के बीच अभिक्रिया की औसत दर का परिकलन (ii) कीजिए।

अथवा

- एक अभिक्रिया $A + B \rightarrow P$ के लिए दर दिया गया है (a) दर = $k [A]^2 [B]$
 - यदि A की सांद्रता दुग्नी कर दी जाए, तो अभिक्रिया की दर कैसे प्रभावित (i) होती है ?
 - यदि B बड़ी मात्रा में उपस्थित हो, तो अभिक्रिया की सम्पूर्ण कोटि क्या है ?
- एक अभिक्रिया 50% पूर्ण होने में 23.1 मिनट लेती है और अभिक्रिया प्रथम कोटि की (b) है। इस अभिक्रिया को 75% पूर्ण होने में कितना समय लगेगा, उसका परिकलन कीजिए । (दिया गया है : $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

56/3/A 14 5

For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s	0	30	60
$\hbox{[CH$_3$COOCH$_3]/mol L^{-1}}$	0.60	0.30	0.15

- (i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- Calculate the average rate of reaction between the time interval 30 (ii) to 60 seconds.

OR

- For a reaction $A + B \rightarrow P$, the rate is given by (a) Rate = $k [A]^2[B]$
 - How is the rate of reaction affected if the concentration of A (i) is doubled?
 - What is the overall order of reaction if B is present in large (ii) excess?
- (b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.

(Given: $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

56/3/A 15

CHEMISTRY MARKING SCHEME

$\underline{AJMER-2015}$

SET - 56/3/A

ques tions	Value points	Marks
01.	2,2–Dimethylpropan–1–ol	1
02.	$H_{3}PO_{2}\ ,\ H_{3}PO_{3}\ ,\ H_{4}P_{2}O_{5}\ ,\ H_{4}P_{2}O_{6}\ ,\ H_{3}PO_{4}\ ,\ H_{4}P_{2}O_{7}\ ,\ H_{3}PO_{5}\ ,\ H_{4}P_{2}O_{8}\ ,\ (HPO_{3})_{3}$	1/2,1/2
	$(HPO_3)_n$ (Any two)	
03.	C ₆ H ₅ -CH ₂ CH ₂ -Br	1
04.	AlCl ₃ , due to greater charge on Al ³⁺ .	1
05.	X_2Y_3	1
06.	(i) Ammineaquadichloridoplatinum(II)	1
	(ii) $[Cr(en)_3]Cl_3$	1
07.	(i) Zn-Hg/HCl or H_2N-NH_2 & KOH/Glycol , Δ	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂ (Any one)	1
	OR	
07.	(i) $C_6H_5CHO < CH_3CHO < HCHO$	1
	(ii) 4 – Methoxybenzoic acid < 4 – Nitrobenzoic acid < 2,4 – Dinitrobenzoic acid	1
08.	(i) As solubility of gases decreases with increase of temperature, less oxygen is	1
	available in summer in the lakes / as cold water contains more oxygen dissolved.	
	(ii) They will shrink, due to osmosis.	1
09.	Due to comparable energies of ns & (n-1)d orbitals / due to presence of unpaired	1
	electrons in (n-1)d orbitals.	
	In transition elements, oxidation states differ from each other by unity whereas in case	
	of p- block elements, the oxidation states differ by units of two	
	OR In transition elements, the higher oxidation states are more stable for heavier	
	elements in a group. In p - block elements, the lower oxidation states are more stable	
	for heavier members due to inert pair effect. (Any one difference)	1
10.	Wt. of $Ag = 1.5g$	
	Molecular mass = $108g/mol$ $F = 96500C/mol$	
		1

	-	
	Or	
	At cathode: $Ag^+ + e^- \longrightarrow Ag_{(s)}$	
	108g of Ag require 1F	
	: 1.5g of Ag require $\frac{1.5}{108}$ F = $\frac{1.5 \times 96500}{108}$ = 1340.27 C	
	108 108	1/2
	$t = \frac{Q}{i} = \frac{1340.27}{15}$	1
	i 1.5	1/2
	=893.51s or 14.89 min	
11.	(i) CH_3 - CH = $CH_2 \xrightarrow{H_2 \circ / H^+} CH_3$ - $CH(OH)$ - CH_3	1
	βr βr _Q	
	CH₃COCI / Anhy AlCl₃ CH₃COCI / Anhy AlCl₃ CCH₃ CCH₃ CCH₃	1
		_
	$ \begin{array}{c} Br\\ I\\ (iii) \end{array} CH_3-CH_2-CH-CH_3 $ $ \xrightarrow{KOH (Alc)} CH_3-CH=CH-CH_3 $	1
	(iii) CH₃-CH₂-CH-CH₃ CH₃-CH=CH-CH₃	
	(or any other correct method)	
	Or	
11.	(i) $C_2H_5Cl + NaI \xrightarrow{Acetone} C_2H_5I + NaCl$	_
	Dry ether	1
	(ii) $O \longrightarrow CI + 2Na + CI \longrightarrow O \longrightarrow Dry ether \longrightarrow O \longrightarrow O \longrightarrow + 2NaCI$	
	(iii) $CH_3Cl + KNO_2 \xrightarrow{\Delta} CH_3 - ONO + KCl$	1
		1
12.	(i) Due to $-I/-R$ effect of $-NO_2$ group & $+I/+R$ effect of $-CH_3$ group or	
	4-nitrophenoxide ion is more stable than 4-methylphenoxide ion	1
	(ii) Due to +R effect of – OH group in phenol / due to sp ² hybridization of C–atom in	
	C-OH group in phenol whereas sp ³ hybridization of C-atom in C-OH group in	
	methanol.	1
	(iii) (CH ₃) ₃ C–Br being a 3° halide prefers to undergo β – elimination on reacting with	
	strong base like NaOCH ₃ .	1
13.	$P_{A}^{o} = 17.5 \text{mm of Hg}$ $W_{B} = 15 \text{g}$ $M_{B} = 180 \text{ g/mol}$	
	$W_A = 150g Ps = ?$	

	(ii) E. Contro. on Early Contro.	1
	(ii) F – Centre or Farbe Centre	1
	(iii) NaCl is heated in an atmosphere of Na vapour / LiCl is heated in an atmosphere of	1
	Li vapour / KCl is heated in an atmosphere of K vapour	
5.	$A^{2+} + B^{+} \longrightarrow A^{3+} + B \qquad (n = 1)$	
	$Kc = 10^{10}$ $F = 96500C/mol$ $T = 25^{\circ}C = 298K$	
	$\Delta G^{o} = ? \qquad \qquad E^{o} = ? \qquad \qquad R = 8.314 \text{J/K/mol}$	
	$\Delta G^{o} = -2.303RT \log Kc$	1/2
	$\Delta G^{o} = -2.303 \times 8.314 \text{ J/K/mol} \times 298 \text{K} \times \log 10^{10}.$	
	$\therefore \Delta G^{o} = -57058.4 \text{ J/mol or } -57.0584 \text{ kJ/mol}$	1
	$\Delta G^{\circ} = -57058.4 \text{ J/mol} = -\text{nFE}^{\circ} = -1 \text{ x } 96500 \text{ x E}^{\circ}$	1/2
	$\therefore E^{o} = \frac{-57058.4}{-96500} = 0.591V \text{(or any other correct method)}$	1
6.	(i) Linkage isomerism	1
	(ii) t ₂ g ³ eg ¹ / Diagrammatic representation	1
	(iii) d ² sp ³ , Octahedral	1/2, 1/2
7.	The accumulation of molecular species at the surface rather than in the bulk of a solid or	
	liquid is termed adsorption.	1/2
	eg: gas like O ₂ , H ₂ , CO, Cl ₂ , NH ₃ or SO ₂ is taken in a closed vessel containing	1/2
	powdered charcoal	
	Due to bond formation / interaction between adsorbent and adsorbate	1
	Physical (van der Waal's adsorption) & Chemical (Langmuir adsorption)	1
3.	(i) Van Arkel Method / vapour phase refining	1
	(ii)Zn acts as a reducing agent	1
	(iii) As ΔS is positive $/\Delta G$ is more negative	1
9.	0 0	
	$HO - C - (CH_2)_4 - C - OH$ $H_2N - (CH_2)_6 - NH_2$	1
	(i) Adipic acid and Hexamethylenediamine	
	OH 	
	Н	
	$H \subset C = 0$	
	(ii) Formaldehyde and Phenol	

	(ii) In acidic amino acid more carboxyl groups as compared to amino groups are present	
	& In basic amino acid more number of amino than carboxyl groups are present	1
	(iii) Phosphodiester linkage	1
21.	(i) CH ₃ -C=N-NH-CO-NH ₂	1
	ĊH₃	
	(ii) C ₆ H ₅ –COOH	1
	COOH	
	(iii) O	1
	$\dot{N}O_2$	
22.	(i) The large positive E^0 value for Mn^{3+} / Mn^{2+} shows that Mn^{2+} (3d ⁵ / half filled d	
	orbital) is much more stable than Mn^{3+} Whereas Cr^{3+} (t $_{2g}^{3}$) is more stable than Cr^{2+}	1
	(ii) Due to d – d transition / due to presence of unpaired electrons in d – orbitals which	
	absorb light in visible region	1
	(iii) $2\text{MnO}_4^- + 16\text{H}^+ + 5\text{C}_2\text{O}_4^{2-} \longrightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 10\text{CO}_2$	1
23.	(i) Caring nature / Generous / Sensible human approach / empathy/ concern (any two)	1/2, 1/2
	(ii) By making posters & displaying them in school premises / by doing role play (or	1
	any other correct answer)	
	(iii) Drugs which are used for the treatment of /counteract depression. eg: Rauwolfia	
	serpentina / Barbituric acid / Equanil / Valium (Diazeparn) / Chlordiazepoxide /	1/2, 1/2
	meprobamate / iproniazid / phenelzine (any one example)	
	(iv) Saccharin / Aspartame / Alitame / Sucrolose / Cyclamate / L-Glucose (any one)	1
24.	(a) (i) Due to lone pair of electron on nitrogen in NH ₃	1
	(ii) Due to inert pair effect / Stability of higher oxidation state decreases down the group	1
	from S to Te / Stability of lower oxidation state increases down the group	
	(iii) ClO ₄ ⁻ is more stable than ClO ⁻ /ClO ₄ ⁻ is weak conjugate base than ClO ⁻	1
	(b)	
	(i) F F	
	Xe Xe	1,1
	(HO)	
	Or	
24	(a) PH_3 $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$	1/- 1/-

	5	
	and textiles.	
	(ii) In the metallurgy (extraction) of gold and platinum.	
	(iii) In the manufacture of dyes, drugs and organic compounds such as CHCl ₃ , CCl ₄ ,	
	DDT, refrigerants (CCl ₂ F ₂ , freon), and bleaching powder.	
	(iv) In the preparation of poisonous gases such as phosgene (COCl ₂), tear gas	
	(CCl_3NO_2) , mustard gas $(ClCH_2CH_2SCH_2Cl)$, etc. Mustard gas was used by	
	Germany in World War I.	
	(v) In sterilizing drinking water. (Any one use)	1
	(e) $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF$	1
25.	CONH ₂ N≡NCI CN N≡C OH	1
		each
	$A = \bigcup_{B = \bigcup_{C \in A}} C = \bigcup_{D \in A} C = \bigcup_{E \in A} C = \bigcup_$	
	Or	
	NH ₂	
	Br NH ⁺ ₃ Cl ⁻	
	NH-C-CH ₃	
	(a) (i) Br (ii) (iii)	111
	(b) $(CH_3)_3N < C_2H_5NH_2 < C_2H_5OH$	1,1,1
	(c) By Hinsberg test - Add Hinsberg reagent (Benzene sulphonyl chloride) in both	1
	compounds (CH ₃) ₂ –NH forms ppt insoluble in KOH while (CH ₃) ₃ –N does not react	1
	(or any other correct test)	
26.	(i) $Ao = 0.60$ $A = 0.30$ when $t = 30s$	_
(a)	$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1
	$k = \frac{2.303}{30} \log \frac{0.60}{0.30}$	
	$k = \frac{2.303}{30} \log 2 = \frac{2.303}{30} \times 0.3010$	1/2
	$k = \frac{0.693}{30} = 0.0231s^{-1}$	
	When $Ao = 0.60$ $A = 0.15$ when $t = 60s$	
	$k = \frac{2.303}{t} \log \frac{0.60}{0.15}$	

(ii) Average rate during the interval 30 - 60 sec = $-\frac{\text{Change in concentration}}{\text{Change in time}}$	1/2
	1/2
$=-\frac{0.15-0.30}{60-30}$	
$=-\frac{-0.15}{30}=0.005 \text{ mol } L^{-1} S^{-1}.$	1
Or	
(a) (i) rate increases by 4 times	1
(ii) 2 nd order	1
(b) Reaction is 50% completed in 23.1 min i.e. Half-life is 23.1 min	
$\therefore \mathbf{k} = \frac{0.693}{t_{1/2}}$	1/2
$= \frac{0.693}{23.1} = 0.03 \text{ min}^{-1}$	
$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]}$	1/2
$0.03 \text{min}^{-1} = \frac{2.303}{t} \log \frac{100}{25}$	1/2
$0.03 = \frac{2.303}{t} \log 4$	1/2
$t = \frac{2.303}{0.03} \times 0.6021 = \frac{1.3866}{0.03}$:	

1

= 46.221 min